19 research outputs found

    Saliency-Informed Spatio-Temporal Vector of Locally Aggregated Descriptors and Fisher Vector for Visual Action Recognition

    Get PDF
    Feature encoding has been extensively studied for the task of visual action recognition (VAR). The recently proposed super vector-based encoding methods, such as the Vector of Locally Aggregated Descriptors (VLAD) and the Fisher Vector (FV), have significantly improved the recognition performance. Despite of the success, they still struggle with the superfluous information that presents during the training stage, which makes the methods computationally expensive when applied to a large number of extracted features. In order to address such challenge, this paper proposes a Saliency-Informed Spatio-Temporal VLAD (SST-VLAD) approach which selects the extracted features corresponding to small amount of videos in the data set by considering both the spatial and temporal video-wise saliency scores; and the same extension principle has also been applied to the FV approach. The experimental results indicate that the proposed feature encoding scheme consistently outperforms the existing ones with significantly lower computational cost

    Fuzzy Interpolation Systems and Applications

    Get PDF
    Fuzzy inference systems provide a simple yet effective solution to complex non-linear problems, which have been applied to numerous real-world applications with great success. However, conventional fuzzy inference systems may suffer from either too sparse, too complex or imbalanced rule bases, given that the data may be unevenly distributed in the problem space regardless of its volume. Fuzzy interpolation addresses this. It enables fuzzy inferences with sparse rule bases when the sparse rule base does not cover a given input, and it simplifies very dense rule bases by approximating certain rules with their neighbouring ones. This chapter systematically reviews different types of fuzzy interpolation approaches and their variations, in terms of both the interpolation mechanism (inference engine) and sparse rule base generation. Representative applications of fuzzy interpolation in the field of control are also revisited in this chapter, which not only validate fuzzy interpolation approaches but also demonstrate its efficacy and potential for wider applications

    Seen to Unseen: When Fuzzy Inference System Predicts IoT Device Positioning Labels That Had Not Appeared in Training Phase

    Full text link
    Situating at the core of Artificial Intelligence (AI), Machine Learning (ML), and more specifically, Deep Learning (DL) have embraced great success in the past two decades. However, unseen class label prediction is far less explored due to missing classes being invisible in training ML or DL models. In this work, we propose a fuzzy inference system to cope with such a challenge by adopting TSK+ fuzzy inference engine in conjunction with the Curvature-based Feature Selection (CFS) method. The practical feasibility of our system has been evaluated by predicting the positioning labels of networking devices within the realm of the Internet of Things (IoT). Competitive prediction performance confirms the efficiency and efficacy of our system, especially when a large number of continuous class labels are unseen during the model training stage.Comment: Accepted by International Conference on Internet of Things, Big Data and Security (IoTBDS) 202

    Gaze-Informed egocentric action recognition for memory aid systems

    Get PDF
    Egocentric action recognition has been intensively studied in the fields of computer vision and clinical science with applications in pervasive health-care. The majority of the existing egocentric action recognition techniques utilize the features extracted from either the entire contents or the regions of interest in video frames as the inputs of action classifiers. The former might suffer from moving backgrounds or irrelevant foregrounds usually associated with egocentric action videos, while the latter may be impaired by the mismatch between the calculated and the ground truth regions of interest. This paper proposes a new gaze-informed feature extraction approach, by which the features are extracted from the regions around the gaze points and thus representing the genuine regions of interest from a first person of view. The activity of daily life can then be classified based only on the identified regions using the extracted gaze-informed features. The proposed approach has been further applied to a memory support system for people with poor memory, such as those with Amnesia or dementia, and their carers. The experimental results demonstrate the efficacy of the proposed approach in egocentric action recognition and thus the potential of the memory support tool in health care

    Grooming Detection using Fuzzy-Rough Feature Selection and Text Classification

    Get PDF
    Online child grooming detection has recently attracted intensive research interests from both the machine learning community and digital forensics community due to its great social impact. The existing data-driven approaches usually face the challenges of lack of training data and the uncertainty of classes in terms of the classification or decision boundary. This paper proposes a grooming detection approach in an effort to address such uncertainty based on a data set derived from a publicly available profiling data set. In particular, the approach firstly applies the conventional text feature extraction approach in identifying the most significant words in the data set. This is followed by the application of a fuzzy-rough feature selection approach in reducing the high dimensions of the selected words for fast processing, which at the same time addressing the uncertainty of class boundaries. The experimental results demonstrate the efficiency and efficacy

    Adaptive Activation Function Generation Through Fuzzy Inference for Grooming Text Categorisation

    Get PDF
    The activation function is introduced to determine the output of neural networks by mapping the resulting values of neurons into a specific range. The activation functions often suffer from ‘gradient vanishing’, ‘non zero-centred function outputs’, ‘exploding gradients’, and ‘dead neurons’, which may lead to deterioration in the classification performance. This paper proposes an activation function generation approach using the Takagi-Sugeno-Kang inference in an effort to address such challenges. In addition, the proposed method further optimises the coefficients in the activation function using the genetic algorithm such that the activation function can adapt to different applications. This approach has been applied to a digital forensics application of online grooming detection. The evaluations confirm the superiority of the proposed activation function for online grooming detection using an imbalanced data set

    Histogram of Fuzzy Local Spatio-Temporal Descriptors for Video Action Recognition

    Get PDF
    Feature extraction plays a vital role in visual action recognition. Many existing gradient-based feature extractors, including histogram of oriented gradients (HOG), histogram of optical flow (HOF), motion boundary histograms (MBH), and histogram of motion gradients (HMG), build histograms for representing different actions over the spatio-temporal domain in a video. However, these methods require to set the number of bins for information aggregation in advance. Varying numbers of bins usually lead to inherent uncertainty within the process of pixel voting with regard to the bins in the histogram. This paper proposes a novel method to handle such uncertainty by fuzzifying these feature extractors. The proposed approach has two advantages: i) it better represents the ambiguous boundarie between the bins and thus the fuzziness of th spatio-temporal visual information entailed in videos, and ii) the contribution of each pixel is flexibly controlled by a fuzziness parameter for various scenarios. The proposed family of fuzzy descriptors and a combination of them were evaluate on two publicly available datasets, demonstrating that the proposed approach outperforms the original counterparts and other state-of-the-art methods
    corecore